As you scroll through the slides

- Have the Unit 10 Study Guide in front of you printed or opened on your computer.
- Use the examples to help you on your test.
- Work out the problems on paper then put in your answer
- Use a calculator

Which 2 angles are alternate interior angles?

\#2

A right triangle has an angle measuring 27 degrees. What is the measure of the third angle?

$$
90+27+x=180
$$

$$
117+x=180
$$

$$
x=180-117
$$

$$
x=63^{\circ}
$$

The triangle angle sum property says that the measures of the three angles of any triangle have a sum of 180°

The plans for Jordan's new playhouse are below.

> If $a=6 \mathrm{~cm}, b=20 \mathrm{~cm}, c=12 \mathrm{~cm}$, and $d=16 \mathrm{~cm}$, what is the area of the front of the playhouse in square cm ?

A. 252

1. Find the area of the triangle .

$$
\begin{gathered}
\mathrm{A}=\frac{1}{2} b h \\
\mathrm{~A}=\frac{1}{2}(20)(6) \\
\mathrm{A}=\frac{1}{2}(120) \\
\mathrm{A}=60
\end{gathered}
$$

2. Find the area of the rectangle.

$$
\begin{aligned}
& A=b h \\
& A=(16)(12) \\
& A=192
\end{aligned}
$$

3. Add the area of the triangle to the area of the rectangle.

$$
60+192=252 \mathrm{~cm}^{2}
$$

What is the area of the figure when $a=42 \mathrm{ft}, \mathrm{b}=18 \mathrm{ft}, \mathrm{c}=21 \mathrm{ft}, \mathrm{d}=24 \mathrm{ft}$?

Note: figure not drawn to scale
A. 504 sq ft
B. 105 sq ft
C. 630 sq ft
D. $2,646 \mathrm{sq} \mathrm{ft}$

What is the area of the figure

when $\mathrm{a}=42 \mathrm{ft}, \mathrm{b}=18 \mathrm{ft}, \mathrm{c}=21 \mathrm{ft}, \mathrm{d}=24 \mathrm{ft}$?

C. 630 sq ft

Divide the figure into two rectangles.
Find the area of each rectangle.

$$
21 * 24=504 \quad 21 * 6=126
$$

Add the areas together.

$$
504+126=630
$$

Divide the figure into two rectangles. Find the area of each rectangle.

$$
21 * 18=378 \quad 42 * 6=252
$$

Add the areas together. $\quad 378+252=630$

What is the area of this figure?

A. 142 in. ${ }^{2}$

What is the area of the regular hexagon with a side length of 30 \#6 \& 13 cm and an apothem of 26 cm ?

A. $390 \mathrm{in}^{2}$ B. 780 in 2
C. $2340 \mathrm{in}^{2}$
D. $4680 \mathrm{in}^{2}$

Step 1: Divide the figure into congruent triangles.

Step 2: Find the area of 1 of the triangles, using the apothem as the height. $\left.A=\frac{1}{2} b h \right\rvert\,$
Step 3: Multiply the area of this 1 triangle by n, the number of congruent triangles, which is equal to the number of sides of the polygon.

What is the area of the regular hexagon with a side length of 30 cm and an apothem of 26 cm ?

\#6 \& 13

C. $2340 \mathrm{in}^{2}$ D. $4680 \mathrm{in}^{2}$

The apothem of a regular polygon is a line segment drawn from the center of the polygon to 1 of its sides. It is perpendicular to that side.

Step 1: Divide the figure into congruent triangles.

Step 2: Find the area of 1 of the triangles, using the apothem as the height. $A=\frac{1}{2} \mathrm{bh}$
Step 3: Multiply the area of this 1 triangle by n, the number of congruent triangles, which is equal to the number of sides of the polygon.

$$
\begin{array}{r}
A=\frac{1}{2} b h=A=\frac{1}{2}(26)(30) \\
A=\frac{1}{2}(780) \\
A=390 \\
390 \times 6=2340 \mathrm{in}^{2}
\end{array}
$$

What is the area of the shaded figure?

First find the area of the entire rectangle. $\mathrm{A}=\mathrm{bh}$

$$
\begin{aligned}
& A=12 \times 10 \\
& A=120 \mathrm{~cm}^{2} \\
& A=\frac{1}{2}(12)(6) \\
& A=\frac{1}{2}(72) \\
& A=36 \mathrm{~cm}^{2}
\end{aligned}
$$

Second, find the area of the triangle. $A=\frac{1}{2}$ bh
a. $120 \mathrm{~cm}^{2}$
b. $48 \mathrm{~cm}^{2}$
c. $72 \mathrm{~cm}^{2}$
d. $84 \mathrm{~cm}^{2}$

Third, subtract the area of the triangle from the area of the rectangle.

$$
120 \mathrm{~cm}^{2}-36 \mathrm{~cm}^{2}=84 \mathrm{~cm}^{2}
$$

How many triangles can be constructed with side lengths of $6 \mathrm{~cm}, 12 \mathrm{~cm}$, and 20 cm ?
A. 0

$6+12=18$ $20>18$

Math Fact \#3: The longest side of a triangle is always shorter than the other 2 side lengths put together.

- If the longest side is shorter than the sum of 2 other side lengths, then exactly 1 triangle is possible.

Which could be the measures of the three angles of an acute triangle?

A triangle has a base of 15 meters and a height of 5 meters.
What is the area of the triangle?

A. $20 \mathrm{~m}^{2}$

B. $37.5 \mathrm{~m}^{2}$
C. $75 \mathrm{~m}^{2}$

$$
A=\frac{1}{2} b h
$$

D. $375 \mathrm{~m}^{2}$

$$
\begin{aligned}
& A=\frac{1}{2}(15)(5) \\
& A=\frac{1}{2}(75) \\
& A=37.5
\end{aligned}
$$

What is the area of the parallelogram?

$A=b h$

$A=b h$
$\mathrm{A}=9 \mathrm{~mm} \times 8 \mathrm{~mm}$
$A=72 \mathrm{~mm}^{2}$

A rectangle has an area of 42 square centimeters and a length of

What is the width of the rectangle?
$A=I w$
$42=6 w$
$\frac{42}{6}=\frac{6 w}{6}$
$7=w$

A. 7 cm
\#14 How many triangles can be constructed with angles measuring $30^{*}, 60^{*}$, and 90^{*} ?
$\begin{array}{lr}\text { A. } 0 & 30 \\ \text { B. } 1 & 60 \\ \text { C. } 2 & +90 \\ \text { D. An infinite number } & 180\end{array}$

Math Fact \#2: Given 3 angles whose measures sum to 180°, an infinite number of triangles are possible.

Which pairs of angles are corresponding angles?

the angles that lie in the same position or "match up" when a transversal crosses two parallel lines

a \& e

b \& f

c \& g
d \& h

Now What?

- Check your answers.
- Submit your test.
- K-mail Mrs. Baker and let her know you are finished.

